CARBONYL COMPOUNDS - Aldehydes and Ketones

F324

Q.1 Draw structures for, and name, all the carbonyl compounds with molecular formulae; a) C_4H_8O b) $C_5H_{10}O$ c) $C_6H_{12}O$

Formation of carbonyl compounds from alcohols

Aldehydes • Oxidation of primary (1°) alcohols - risk of oxidation to acids

however, this can happen CH₃CHO(I) + [O] -> CH₃COOH(I) ethanal ethanoic acid

- it is essential to distil off the aldehyde before it gets oxidised to the acid
- the alcohol is dripped into a warm solution of acidified K₂Cr₂O₇
- the aldehyde has a low boiling point no hydrogen bonding it distils off
- if it didn't distil off it would be oxidised to the equivalent carboxylic acid
- to oxidise an alcohol straight to the acid you would reflux the mixture

Ketones • Oxidation of secondary (2°) alcohols.

 $\begin{array}{cccc} eg & \mathsf{CH}_3\mathsf{CHOHCH}_3(\mathsf{I}) + [\mathsf{O}] & \longrightarrow & \mathsf{CH}_3\mathsf{COCH}_3(\mathsf{I}) + \mathsf{H}_2\mathsf{O}(\mathsf{I}) \\ propan-2\text{-}ol & propanone \end{array}$

Q.2 Which alcohol would you use to make the following?

- *C*₂*H*₅*CHO*
- *C*₂*H*₅*COCH*₃
- hexanal
- 3-methylhexan-2-one
- 3-methylpentanal

CHEMICAL PROPERTIES OF CARBONYL COMPOUNDS

F324

OXIDATION	 provides a way of differentiating between aldehydes and ketones mild oxidising agents are best aldehydes are easier to oxidise powerful oxidising agents oxidise ketones to carboxylic acid mixtures
ALDEHYDES	easily oxidised to acids e.g. $RCHO(I) + [O] \longrightarrow RCOOH(I)$ $CH_3CHO(I) + [O] \longrightarrow CH_3COOH(I)$
KETONES	only oxidised under vigorous conditions to acids with fewer carbons. $e.g. C_2H_5COCH_2CH_3(I) + 3 [O] \longrightarrow C_2H_5COOH(I) + CH_3COOH(I)$

Q.3 What product (if any) is formed when the following undergo **mild** oxidation?

- *C*₂*H*₅*CHO*
- *C*₂*H*₅*COCH*₃
- hexanal
- 3-methylhexan-2-one
- 3-methylpentanal
- cyclohexanone

· 3

IDENTIFYING A CARBONYL COMPOUND

- *Methods* characteristically strong peak at 1400-1600 cm⁻¹ in the infra red spectrum or
 - formation of orange crystalline precipitate with 2,4-dinitrophenylhydrazine

BUT to narrow it down to an aldehyde or ketone you must do a second test

Differentiation • to distinguish an aldehyde from a ketone you need a mild oxidising agent ...

Tollens' Reagent • ammoniacal silver nitrate

- contains the diammine silver(I) ion [Ag(NH₃)₂]⁺
- acts as a mild oxidising agent and will oxidise aldehydes but not ketones
- the silver(I) ion is reduced to silver $Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$
- the test is known as THE SILVER MIRROR TEST

Fehling's Solution • contains copper(II) ions complexed with tartrate ions

- on warming, it will oxidise aliphatic (but not aromatic) aldehydes
- copper(II) is reduced to a red precipitate of copper(I) oxide, Cu₂O

The silver mirror test is the better alternative as it works with all aldehydes.

Ketones do not react with Tollens' Reagent or Fehling's Solution.

Q.4 Which of the following produce an orange precipitate with 2,4-dinitrophenylhydrazine?

- C₂H₅OH 3-methylhexan-2-one
- C₂H₅COCH₃ cyclohexanol
- hexanal 3-methylpentan-1-ol

Q.5 Which of the following produce a silver mirror with Tollens' reagent?

- C₂H₅CHO 3-methylhexan-2-one
- C₂H₅COCH₃ cyclohexanone
- hexanal 3-methylpentanal

F324

NUCLEOPHILIC ADDITION REACTIONS

Mechanism • occurs with both aldehydes and ketones

- involves addition to the polar C=O double bond
- attack is by nucleophiles at the positive carbon centre
- alkenes are non-polar and are attacked by electrophiles

	Bond	Polarity	Attacked by	Result
Carbonyl	C=O	Polar	Nucleophiles	Addition
Alkene	C=C	Non-polar	Electrophiles	Addition

REDUCTION Reagent sodium tetrahydridoborate(III) (sodium borohydride), NaBH₄ Conditions aqueous or alcoholic solution Mechanism Nucleophilic addition (also reduction as it is addition of H⁻) Nucleophile H[−] (hydride ion)

> *Product(s)* Aldehydes REDUCED to primary (1°) alcohols REDUCED to secondary (2°) alcohols Ketones Equation(s) CH₃CHO CH₃CH₂OH 2[H]

> > $CH_3COCH_3 + 2[H]$

CH₃CHOHCH₃ ->

- H^{-} is a nucleophile and attacks the $C^{\delta+}$ Step 1 An electron pair from the C=C moves onto O making it -ive
- A lone pair on oxygen removes a proton from water Step 2 Overall, there is addition of hydrogen (reduction)
- *O.6* Draw a diagram to indicate the bonding in NaBH₄.

6		F324 Carbonyl compounds
Alternative Method	Reagent Conditions Reaction type	hydrogen catalyst - nickel or platinum Hydrogenation, reduction
	Equation(s)	$CH_3CHO + H_2 \longrightarrow CH_3CH_2OH$ $CH_3COCH_3 + H_2 \longrightarrow CH_3CHOHCH_3$
	Note Hy e.c	drogen also reduces C=C bonds g. CH ₂ = CHCHO + 2H ₂ > CH ₃ CH ₂ CH ₂ OH

Q.7 Why are C=C double bonds NOT reduced when $NaBH_4$ is used?

Q.8 Draw structures of the organic products formed when the following are reduced using... $NaBH_4$ H_2

 $CH_2 = CHCH_2CHO$

F324

- Step 1CN⁻ acts as a nucleophile and attacks the slightly positive COne of the C=O bonds breaks; a pair of electrons goes onto the O
- Step 2 A pair of electrons is used to form a bond with H⁺ Overall, there has been addition of HCN
- Notes HCN is a weak acid; HCN \iff H⁺ + CN⁻ few CN⁻ ions produced
 - the reaction is catalysed by alkali produces more of the nucleophilic CN⁻
 - watch out for the possibility of optical isomerism in hydroxynitriles

Identification A simple way of characterising a compound (finding out what it is) is to measure

• the melting point of a solid • the boiling point of a liquid

The following structural isomers have similar boiling points because of similar van der Waals forces and dipole-dipole interactions. They would be impossible to identify with any precision using boiling point determination.

By forming the 2,4-dinitrophenylhydrazone derivatives and taking the melting point of the **purified**, crystalline product, it is easy to identify the original compound.

ADDITION-ELIMINATION

Q.6 Suggest a method for differentiating between the following. What would be seen?

F324

- C_2H_5CHO and $C_2H_5COCH_3$
- $C_3H_7COCH_3$ and $C_2H_5COC_2H_5$
- hexanal and hexanone

Q.5 Write out equations for the reactions between HCN and...

- *C*₂*H*₅*CHO* + *HCN* —>
- *CH*₃*COCH*₃ + *HCN* —>
- hexanal + HCN ____>

Indicate which reactions give rise to optically active organic compounds?

Why is the addition of HCN such a useful reaction?